寰玥财富谈大数据征信防范资金诈骗
传统征信在方便个人信贷、辅助金融授信决策、防范信用风险和提升金融获得性等方面发挥着关键作用,但其在互联网金融领域的局限性也不容忽视。一是全国还有5亿左右人口没有在持牌金融机构的信用活动,从而不被其所覆盖。二是随着“互联网+”的发展,互联网上产生、沉淀了大量与个人征信相关的数据,目前还难以被其采用。 一、政策扶持 自2013年起,我国陆续颁布了一系列法律法规,为征信业的健康发展构建了法律制度框架。2013年3月国务院发布《征信业管理条例》(以下简称《条例》),成为我国首部征信业法规,也是我国征信法制建设的基石。2013年12月为配合《条例》的实施,中国人民银行出台《征信机构管理办法》,贯彻建立健全社会征信体系的要求,确立征信经营活动遵循的制度规范和监管依据。 一、征信的基本概念 大数据征信是指通过对海量的、多样化的、实时的、有价值的数据进行采集、整理、分析和挖掘,并运用大数据技术重新设计征信评价模型算法,多维度刻画信用主体的“画像”,向信息使用者呈现信用主体的违约率和信用状况。 大数据征信活动在《征信业管理条例》所界定的征信业务范围内,其本质仍是对信用主体信息的收集、整理、保存、加工和公布,但与传统征信相比,突出大数据技术在征信活动中的应用,强调数据量大、刻画维度广、信用状况动态交互等特点,可作为征信体系的有益补充。 二、大数据征信的创新特点 从表面上看,大数据征信和传统征信似乎只是数据的获取渠道不同,前者主要来自于互联网,后者主要来自于传统线下渠道,但是二者存在较大的差异。大数据征信创新主要表现在覆盖人群广泛、信息维度多元、应用场景丰富及信用评估全面四个方面,由此带来征信成本的降低和征信效率的提高。 寰玥财富认为大数据征信的创新特点具体为一下两点: 首先,覆盖人群广泛。传统征信主要覆盖在持牌金融机构有信用记录的人群。大数据征信通过大数据技术捕获传统征信没有覆盖的人群,利用互联网留痕协助信用的判断,满足P2P网络借贷、第三方支付及互联网保险等互联网金融新业态身份识别、反欺诈、信用评估等多方面征信需求。 其次,信息维度多元。在互联网时代,大数据征信的信息数据来源更广泛,种类更多样。大数据征信数据不再局限于金融机构、政府机构以及电信提供的个人基本信息、账单信息、信贷记录、逾期记录等,还引入互联网行为轨迹记录、社交和客户评价等数据。这些数据在一定程度上可以反映信息主体的行为习惯、消费偏好以及社会关系,有利于全面评估信息主体的信用风险。 |
关键词:寰玥财富,大数据征信 |